Add like
Add dislike
Add to saved papers

Designing a gas foamed scaffold for keratoprosthesis.

Artificial corneas or keratoprostheses are intended to replace diseased or damaged cornea in the event that vision cannot be restored using donor cornea tissue. A new class of artificial cornea comprising a combination of poly (2-hydroxyethyl methacrylate) and poly (methyl methacrylate) was developed which was fabricated using a gas foaming technique. Referred to as the gas-foamed KPro, it was designed to permit clear vision and secure host biointegration to facilitate long-term stability of the device. In vitro assessments show cell growth into the body of the porous edge or skirt of the gas-foamed KPro. The optically transparent center (i.e., core) of the device demonstrates 85 - 90% of light transmittance in the 500 - 700nm wavelength range. Mechanical tensile data indicates that the gas-foamed KPro is mechanically stable enough to maintain its structure in the ocular environment and also during implantation. The gas-foamed KPro may provide an alternate option for cornea replacement that minimizes post implantation tissue melting, thereby achieving long-term stability in the ocular environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app