JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cuscuta chinensis seeds water extraction protecting murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury.

ETHNOPHARMACOLOGICAL RELEVANCE: Cuscuta chinensis (C. chinensis) is a well-known traditional Chinese herb that has been used to treat heart disease, diabetes, liver injury, cancer, and aging.

MATERIALS AND METHODS: Murine osteoblastic MC3T3-E1 cells were treated with various concentrations of C. chinensis water extraction at different time intervals. The antioxidant effect of C. chinensis on MC3T3-E1 cells was evaluated using MTT and TUNEL assays. The effect of C. chinensis on cell cycle was analyzed by flow cytometry with propidium iodide. Lipid peroxidation was measured by the HPLC method. The cellular redox status was determined from the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) and the enzymes involved in glutathione metabolism, including glutathione reductase (GR), Glutathione S-transferase (GST), and Glucose-6-phosphate dehydrogenase (G6PD). The changes in relative mitochondrial transmembrane potential (ΔΨm) in the MC3T3-E1 cells were analyzed with rhodamine 123 staining. Western blot analysis was used to evaluate the levels of cytochrome c (cyto c), Bax, Bcl-2, caspase 3, Sirt3, and IDH2 expressions.

RESULTS: The C. chinensis water extraction protects tertiary butyl hydroperoxide (TBHP)-treated MC3T3-E1 cells from death in a dose-dependent manner. C. chinensis treatment significantly inhibited the reactive oxygen species (ROS) generation, malondialdehyde (MDA) production, and increased the activity of superoxide dismutase (SOD), GR, GST, and G6PD. The release of cyto c from mitochondria was reduced by C. chinensis, which increased the expression of antiapoptotic IDH2, Sirt3, and Bcl-2 and decreased the expression of Bax, cyto c, and caspase 3.

CONCLUSIONS: C. chinensis modulated the oxidative stress-induced apoptosis in MC3T3-E1 cells, probably due to its antioxidant activity and functioning via mitochondria-dependent pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app