Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Transactivation of ErbB receptors by leptin in the cardiovascular system: mechanisms, consequences and target for therapy.

Many experimental and clinical studies have demonstrated that elevated leptin concentration in patients with obesity/metabolic syndrome contributes to the pathogenesis of cardiovascular disorders including arterial hypertension, atherosclerosis, restenosis after coronary angioplasty and myocardial hypertrophy. Receptor tyrosine kinases belonging to the ErbB family, especially ErbB1 (epidermal growth factor receptor) and ErbB2 are abundantly expressed in the blood vessels and the heart. EGFR is activated not only by its multiple peptide ligands but also by many other factors including angiotensin II, endothelin-1, norepinephrine, thrombin and prorenin; the phenomenon referred to as "transactivation". Augmented EGFR signaling contributes to abnormalities of vascular tone and renal sodium handling as well as vascular remodeling and myocardial hypertrophy through various intracellular mechanisms, in particular extracellular signal-regulated kinases (ERK) and phosphoinositide 3-kinase (PI3K). Recent experimental studies indicate that chronically elevated leptin transactivates the EGFR through the mechanisms requiring reactive oxygen species and cytosolic tyrosine kinase, c-Src. In addition, hyperleptinemia increases ErbB2 activity in the arterial wall. Stimulation of EGFR and ErbB2 downstream signaling pathways such as ERK and PI3K in the vascular wall and the kidney may contribute to the increase in vascular tone, enhanced tubular sodium reabsorption as well as vascular and renal lesions in hyperleptinemic obese subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app