Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diffusion tensor imaging of Parkinson's disease, atypical parkinsonism, and essential tremor.

Diffusion tensor imaging could be useful in characterizing movement disorders because it noninvasively examines multiple brain regions simultaneously. We report a multitarget imaging approach focused on the basal ganglia and cerebellum in Parkinson's disease, parkinsonian variant of multiple system atrophy, progressive supranuclear palsy, and essential tremor and in healthy controls. Seventy-two subjects were studied with a diffusion tensor imaging protocol at 3 Tesla. Receiver operating characteristic analysis was performed to directly compare groups. Sensitivity and specificity values were quantified for control versus movement disorder (92% sensitivity, 88% specificity), control versus parkinsonism (93% sensitivity, 91% specificity), Parkinson's disease versus atypical parkinsonism (90% sensitivity, 100% specificity), Parkinson's disease versus multiple system atrophy (94% sensitivity, 100% specificity), Parkinson's disease versus progressive supranuclear palsy (87% sensitivity, 100% specificity), multiple system atrophy versus progressive supranuclear palsy (90% sensitivity, 100% specificity), and Parkinson's disease versus essential tremor (92% sensitivity, 87% specificity). The brain targets varied for each comparison, but the substantia nigra, putamen, caudate, and middle cerebellar peduncle were the most frequently selected brain regions across classifications. These results indicate that using diffusion tensor imaging of the basal ganglia and cerebellum accurately classifies subjects diagnosed with Parkinson's disease, atypical parkinsonism, and essential tremor and clearly distinguishes them from control subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app