Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Bone morphogenetic protein 4 supports the initial differentiation of hen (Gallus gallus) granulosa cells.

In the hen ovary, selection of a follicle into the preovulatory hierarchy occurs from a small cohort of prehierarchal (6-8 mm) follicles. Prior to follicle selection the granulosa layer remains in an undifferentiated state despite elevated follicle-stimulating hormone receptor (FSHR) expression. The present studies describe a role for bone morphogenetic protein 4 (BMP4) in supporting FSHR mRNA expression in granulosa cells from prehierarchal follicles and promoting differentiation at follicle selection. Culture of undifferentiated granulosa cells in culture medium alone resulted in a significant decline in levels of FSHR mRNA (by ~80% compared to freshly collected cells). By comparison, granulosa cultured with BMP4 (10-100 ng/ml) maintained FSHR and expression at approximately in vivo levels. Because both granulosa and theca tissues from prehierarchal follicles express BMP4, it is suggested that BMP4 acts in a paracrine and/or autocrine fashion to support elevated FSHR expression prior to follicle selection. Granulosa cells cultured with BMP4 for 24 h also initiated FSH-induced cAMP production and indirectly initiated anti-Mullerian hormone (AMH), CYP11A, and STAR expression plus progesterone production. However, pretreatment with the BMP antagonist NOGGIN or the mitogen-activated protein kinase (MAPK) agonist transforming growth factor alpha attenuated or blocked each action promoted by BMP4. We conclude that prior to and immediately after selection, BMP4 serves to support FSHR expression within the granulosa layer, yet prior to selection, multiple factors (including inhibitory MAPK signaling, AMH, and BMP antagonists) can modulate FSHR expression and suppress FSH-mediated cell signaling to prevent granulosa cell differentiation prior to follicle selection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app