Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

RACK1 (receptor for activated C-kinase 1) interacts with FBW2 (F-box and WD-repeat domain-containing 2) to up-regulate GCM1 (glial cell missing 1) stability and placental cell migration and invasion.

Biochemical Journal 2013 July 16
GCM1 (glial cell missing 1) is a short-lived transcription factor essential for placental development. The F-box protein, FBW2 (F-box and WD-repeat domain-containing 2), which contains five WD (tryptophan-aspartate) repeats, recognizes GCM1 and mediates its ubiquitination via the SCFFBW2 E3 ligase complex. Although the interaction between GCM1 and FBW2 is facilitated by GCM1 phosphorylation, it is possible that this interaction might be regulated by additional cellular factors. In the present study, we perform tandem-affinity purification coupled with MS analysis identifying RACK1 (receptor for activated C-kinase 1) as an FBW2-interacting protein. RACK1 is a multifaceted scaffold protein containing seven WD repeats. We demonstrate that the WD repeats in both RACK1 and FBW2 are required for the interaction of RACK1 and FBW2. Furthermore, RACK1 competes with GCM1 for FBW2 and thereby prevents GCM1 ubiquitination, which is also supported by the observation that GCM1 is destabilized in RACK1-knockdown BeWo placental cells. Importantly, RACK1 knockdown leads to decreased expression of the GCM1 target gene HTRA4 (high-temperature requirement protein A4), which encodes a serine protease crucial for cell migration and invasion. As a result, migration and invasion activities are down-regulated in RACK1-knockdown BeWo cells. The present study reveals a novel function for RACK1 to regulate GCM1 activity and placental cell migration and invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app