Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Glycine-immunoreactive neurons in the brain of a shark (Scyliorhinus canicula L.).

The glycinergic cell populations in the brain of the lesser spotted dogfish were studied by a glycine immunofluorescence method. Numerous glycine-immunoreactive (Gly-ir) neurons were observed in different brain nuclei. In the telencephalon, Gly-ir cells were observed in the olfactory bulb, telencephalic hemispheres, and preoptic region. In the hypothalamus, cerebrospinal fluid-contacting Gly-ir neurons were observed in the lateral and posterior recess nuclei. Coronet cells of the saccus vasculosus were Gly-ir. In the diencephalon, Gly-ir neurons were observed in the prethalamus and pretectum. In the midbrain, both the optic tectum and lateral mesencephalic nucleus contained numerous Gly-ir neurons. In the cerebellum, many Golgi cells were Gly-ir. In the rhombencephalon, Gly-ir cells were observed in the medial and ventral octavolateral nuclei, vagal lobe, visceromotor nuclei, and reticular formation, including the inferior raphe nucleus. In the spinal cord, some neurons of the marginal nucleus and some cells of the dorsal and ventral horns were Gly-ir. Comparison of dogfish Gly-ir cell populations with those reported for the sea lamprey, Siberian sturgeon, and zebrafish revealed some shared features but also notable differences. For example, Gly-ir cells were observed in the dogfish cerebellum, unlike the case in the Siberian sturgeon and zebrafish, whereas the absence of Gly-ir neurons in the isthmus is shared by all these species, except for lampreys. Gly-ir populations in the dogfish hypothalamus and telencephalon are notable in comparison with those of the other jawed vertebrates investigated to date. Together, these results reveal a complex and divergent evolution of glycinergic systems in the major groups of fishes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app