Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass.

The thermodynamic comparison in dark fermentation between amino acids and reducing sugars released from Nannochloropsis oceanica biomass are investigated for the first time. The total utilisation efficiencies of amino acids and reducing sugars are both about 95% in dark fermentation. But the consumption time of most amino acids is about 2 times as long as that of most reducing sugars in dark fermentation. A three-stage method comprising dark fermentation, photofermentation and methanogenesis is proposed to improve hydrogen and energy yields from N. oceanica biomass. Overall, the maximum hydrogen yield of 183.9 ml/g-total volatile solids (TVS) and the methane yield of 161.3 ml/g-TVS are achieved from N. oceanica biomass through the three-stage method. The total energy yield of hydrogen and methane from microalgae biomass through the three-stage method is 1.7 and 1.3 times higher than those through the two-stage (dark fermentation and methanogenesis) and single-stage (methanogenesis) methods, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app