Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spectroscopic, radiochemical, and theoretical studies of the Ga3+-N-2-hydroxyethyl piperazine-N'-2-ethanesulfonic acid (HEPES buffer) system: evidence for the formation of Ga3+ - HEPES complexes in (68) Ga labeling reactions.

Recent reports have claimed a superior performance of HEPES buffer in comparison to alternative buffer systems for (67/68) Ga labeling in aqueous media. In this paper we report spectroscopic ((1) H and (71) Ga NMR), radiochemical, mass spectrometry and theoretical modeling studies on the Ga(3+)/HEPES system (HEPES = N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) performed with the aim of elucidating a potential contribution of HEPES in the (68/67) Ga radiolabeling process. Our results demonstrate that HEPES acts as a weakly but competitive chelator of Ga(3+) and that this interaction depends on the relative Ga(3+): HEPES concentration. A by-product formed in the labeling mixture has been identified as a [(68) Ga]Ga(HEPES) complex via chromatographic comparison with the nonradioactive analog. The formation of this complex was verified to compete with [(68) Ga]Ga(NOTA) complexation at low NOTA concentration. Putative chelation of Ga(3+) by the hydroxyl and adjacent ring nitrogen of HEPES is proposed on the basis of (1)H NMR shifts induced by Ga(3+) and theoretical modeling studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app