Add like
Add dislike
Add to saved papers

Calorie restriction modulates redox-sensitive AP-1 during the aging process.

Oxidative stress is claimed to be a major cause of aging. Recent data suggest that calorie restriction (CR) prolongs life span by its ability to retard aging, possibly by regulating the intracellular redox status through its antioxidative actions. Currently, there is little information showing the influences of age and CR on the redox-sensitive transcription factor activator protein-1 (AP-1). In the present study, we investigated how age affects the status of AP-1 and whether CR modulates the age effect. For our study, we used the kidney from male Fischer 344 rats, ages 6, 12, 18, and 24 months fed ad libitum (AL) or a CR diet. Results from our study showed that AP-1 binding activity markedly increases with age, while CR keeps this activity at the level of 6-month-old rats. We found that c-Jun and c-Fos protein levels increase during aging, and that aging induces phosphorylation of c-Jun, which might enhance AP-1 transcriptional activity. For CR's action, we found that in the nucleus of aged rats, AP-1 activation was blunted by decreasing c-Jun and c-Fos levels and inhibiting c-Jun protein phosphorylation. Results also indicated that matrix metalloproteinase-13 and heme oxygenase-1, which have an AP-1 binding site in their promoter regions, have a similar tendency toward AP-1 binding activity. Based on the data of these findings, we concluded that AP-1 activity increases in rat kidney with age and that CR reduces AP-1 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app