JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Darexaban: anticoagulant effects in mice and human plasma in vitro, antithrombotic effects in thrombosis and bleeding models in mice and effects of anti-inhibitor coagulant complex and recombinant factor VIIa.

Here, we investigated the anticoagulant effects of darexaban in mice and human plasma in vitro, effects of darexaban in thrombosis and bleeding models in mice, and reversal effects of anti-inhibitor coagulant complex (ACC) and recombinant factor VIIa (rFVIIa) on anticoagulant effects of darexaban. In mice, darexaban inhibited FXa activity in plasma with an ED50 value of 24.8 mg/kg. Both darexaban and warfarin prolonged prothrombin time (PT) at 3 mg/kg and 0.3 mg/kg/day, respectively. PT and activated partial thromboplastin time (aPTT) prolonged by darexaban were dose-dependently reversed by intravenously-administered rFVIIa, significantly so at 1 mg/kg. In a pulmonary thromboembolism (PE) mouse model, both darexaban and warfarin dose-dependently reduced the mortality rate, significantly so at 10 mg/kg and 3 mg/kg/day, respectively. In a FeCl3-induced venous thrombosis (VT) mouse model, darexaban (0.3-10 mg/kg) dose-dependently decreased the thrombus protein content, significantly so at doses of 3 mg/kg or higher. In a tail-transection mouse model, darexaban had no significant effect on the amount of blood loss at doses up to 10 mg/kg, while warfarin showed a dose-dependent increase in blood loss, significantly so from 1 mg/kg/day. Darexaban and its metabolite darexaban glucuronide significantly prolonged PT and aPTT in human plasma in vitro, and while rFVIIa concentration-dependently reversed the prolonged PT in this plasma, ACC dose-dependently reversed both PT and aPTT changes prolonged by darexaban. Taken together, these results suggest that darexaban has a potential to be an oral anticoagulant with a better safety profile than warfarin, and that rFVIIa and ACC may be useful as antidotes to darexaban in cases of overdose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app