Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Activation of SUR2B/Kir6.1-type K(ATP) channels protects glomerular endothelial, mesangial and tubular epithelial cells against oleic acid renal damage].

Cumulative evidence suggests that renal vascular endothelial injury play an important role in initiating and extending tubular epithelial injury and contribute to the development of ischemic acute renal failure. Our previous studies have demonstrated that iptakalim's endothelium protection is related to activation of SUR2B/Kir6.1 subtype of ATP sensitive potassium channel (K(ATP)) in the endothelium. It has been reported that SUR2B/Kir6.1 channels are widely distributed in the tubular epithelium, glomerular mesangium, and the endothelium and the smooth muscle of blood vessels. Herein, we hypothesized that activating renal K(ATP) channels with iptakalim might have directly neroprotective effects. In this study, glomerular endothelial, mesangial and tubular epithelial cells which are the main cell types to form nephron were exposed to oleic acid (OA) at various concentrations for 24 h. 0.25 microl/ml OA could cause cellular damage of glomerular endothelium and mesangium, while 1.25 microl/ml OA could lead to the injury of three types of renal cells. It was observed that pretreatment with iptakalim at concentrations of 0.1, 1, 10 or 100 micromol/L prevented cellular damage of glomerular endothelium and tubular epithelium, whereas iptakalim from 1 to 100 micromol/L prevented the injury of mesangial cells. Our data showed iptakalim significantly increased survived cell rates in a concentration-dependent manner, significantly antagonized by glibenclamide, a K(ATP) blocker. Iptakalim played a protective role in the main cell types of kidney, which was consistent with natakalim, a highly selective SUR2B/Kir6.1 channel opener. Iptakalim exerted protective effects through activating SUR2B/Kir6.1 channels, suggesting a new strategy for renal injury by its endothelial and renal cell protection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app