Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Decrease in blood pressure and regression of cardiovascular complications by angiotensin II vaccine in mice.

Vaccines have been recently developed to treat various diseases such as cancer, rheumatoid arthritis and Alzheimer's disease in addition to infectious diseases. However, before use in the clinical setting, vaccines targeting self-antigens must be demonstrated to be effective and safe, evoking an adequate humoral immune response from B cells while avoiding T cell activation in response to self. Although the vaccine targeting angiotensin II (Ang II) is efficient in rodents and humans, little is known regarding the immunological activation and safety of the vaccine. In this study, we evaluated the efficiency and safety of an Ang II peptide vaccine in mice. Immunization with Ang II conjugated to keyhole limpet hemocyanin (KLH) successfully induced the production of anti-Ang II antibody, which blocked Ang II signaling in human aortic smooth muscle cells. However, Ang II itself did not activate T cells, as assessed by the proliferation and lymphokine production of T cells in immunized mice, whereas KLH activated T cells. In an Ang II-infused model, the non-immunized mice showed high blood pressure (BP), whereas the immunized mice (Ang II-KLH) showed a significant decrease in systolic BP, accompanied by significant reductions in cardiac hypertrophy and fibrosis. Importantly, anti-Ang II antibody titer was not elevated even after the administration of large amounts of Ang II, indicating that Ang II itself boosted antibody production, most likely due to less activation of T cells. In addition, no accumulation of inflammatory cells was observed in immunized mice, because endogenous Ang II would not activate T cells after immunization with Ang II-KLH. Taken together, these data indicate that vaccines targeting Ang II might be effective to decrease high BP and prevent cardiovascular complications without severe side effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app