JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of exercise duration on metabolic adaptations in working muscle to short-term moderate-to-heavy aerobic-based cycle training.

This study aimed at investigating the relative roles of the duration versus intensity of exercise on the metabolic adaptations in vastus lateralis to short-term (10 day) aerobic-based cycle training. Healthy males with a peak aerobic power (VO2 peak) of 46.0 ± 2.0 ml kg(-1) min(-1) were assigned to either a 30-min (n = 7) or a 60-min (n = 8) duration performed at two different intensities (with order randomly assigned), namely moderate (M) and heavy (H), corresponding to 70 and 86 % VO2 peak, respectively. No change (P > 0.05) in VO2 peak was observed regardless of the training program. Based on the metabolic responses to prolonged exercise (60 % VO2 peak), both M and H and 30 and 60 min protocols displayed less of a decrease (P < 0.05) in phosphocreatine (PCr) and glycogen (Glyc) and less of an increase (P < 0.05) in free adenosine diphosphate (ADPf), free adenosine monophosphate (AMPf), inosine monophosphate (IMP) and lactate (La). Training for 60 min compared with 30 min resulted in a greater protection (P < 0.05) of ADPf, AMPf, PCr and Glyc during exercise, effects that were not displayed between M and H. The reduction in both VO2 and RER (P < 0.05) observed during submaximal exercise did not depend on training program specifics. These findings indicate that in conjunction with our earlier study (Green et al., Eur J Appl Physiol, 2012b), a threshold exists for duration rather than intensity of aerobic exercise to induce a greater training impact in reducing metabolic strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app