JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adipose tissue behavior is distinctly regulated by neighboring cells and fluid flow stress: a possible role of adipose tissue in peritoneal fibrosis.

Adipose tissue, together with the mesothelial layer and microvessels, is a major component of the mesenteric peritoneum, and the mesenterium is a target site for peritoneal fibrosis. Adipose tissue has been speculated to play a role in peritoneal dialysis (PD)-related fibrosis, but the precise cellular kinetics of adipose tissue during this process remain to be determined. To clarify this critical issue, we analyzed the kinetics of adipose tissue using a novel peritoneal reconstruction model in which the effects of mesothelial cells or endothelial cells could be identified. Adipose tissue was co-cultured with mesothelial cells or endothelial cells in a combined organ culture and fluid flow stress culture system. Spindle mesenchymal cells and immature adipocytes derived from adipose tissue were characterized by immunohistochemistry. Adipose tissue fragments cultured in this system yielded many spindle mesenchymal cells in non-co-culture conditions. However, the number of spindle mesenchymal cells emerging from adipose tissue was reduced in co-culture conditions with a covering layer of mesothelial cells. Mesothelial cells co-cultured in the separated condition did not inhibit the emergence of spindle mesenchymal cells from adipose tissue. Interestingly, endothelial cells promoted the emergence of lipid-laden immature adipocytes from adipose tissue under fluid flow stress. We have demonstrated that adipose tissue behavior is not only regulated by mesothelial cells and endothelial cells under fluid flow stress, but is also involved in fibrosis and fat mass production in the peritoneum. Our findings suggest that adipose tissue is a potential source of cells for peritoneal fibrosis caused by PD therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app