Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The tetraspanin network modulates MT1-MMP cell surface trafficking.

The membrane-type 1 matrix metalloproteinase (MT1-MMP) drives fundamental physiological and pathophysiological processes. Among other substrates, MT1-MMP cleaves components of the extracellular matrix and activates other matrix-cleaving proteases such as MMP-2. Trafficking is a highly effective means to modulate MT1-MMP cell surface expression, and hence regulate its function. Here, we describe the complex interaction of MT1-MMP with tetraspanins, their effects on MT1-MMP intracellular trafficking and proteolytic function. Tetraspanins are credited as membrane organizers that form a network within the membrane to regulate the trafficking of associated proteins. In short, we found MT1-MMP to interact with the tetraspanin-associated EWI-2 protein by a yeast two-hybrid screen. Immunoprecipitation analysis confirmed this interaction and further revealed that MT1-MMP also stably interacts with distinct tetraspanins (CD9, CD37, CD53, CD63, CD81, and CD82) and the tetraspanin-like MAL protein. By using different MT1-MMP truncation constructs and mutants, we observed that all tetraspanins and MAL associated with the hemopexin domain of MT1-MMP. Moreover, this interaction was independent of O-glycosylation of MT1-MMP and exclusively occurred in the endoplasmic reticulum. Here, the respective subcellular compartment was identified by fitting the MT1-MMP interaction pattern to a model for post-translational processing of MT1-MMP. In addition, tetraspanins differentially affected the cell surface localization of MT1-MMP, its capacity to activate pro-MMP-2, and the collagen invasion capacity. Interestingly, the degree of tetraspanin-MT1-MMP association did not correlate with its impact on MT1-MMP function. Tetraspanins thus distinctly affect MT1-MMP subcellular localization and function, and may constitute an effective mechanism to control MT1-MMP-dependent proteolysis at the cell surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app