JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A variant conferring cofactor-dependent assembly of Escherichia coli dimethylsulfoxide reductase.

We have investigated the final steps of complex iron-sulfur molybdoenzyme (CISM) maturation using Escherichia coli DMSO reductase (DmsABC) as a model system. The catalytic subunit of this enzyme, DmsA, contains an iron-sulfur cluster (FS0) and a molybdo-bis(pyranopterin guanine dinucleotide) cofactor (Mo-bisPGD). We have identified a variant of DmsA (Cys59Ser) that renders enzyme maturation sensitive to molybdenum cofactor availability. DmsA-Cys59 is a ligand to the FS0 [4Fe-4S] cluster. In the presence of trace amounts of molybdate, the Cys59Ser variant assembles normally to the cytoplasmic membrane and supports respiratory growth on DMSO, although the ground state of FS0 as determined by EPR is converted from high-spin (S=3/2) to low-spin (S=1/2). In the presence of the molybdenum antagonist tungstate, wild-type DmsABC lacks Mo-bisPGD, but is translocated via the Tat translocon and assembles on the periplasmic side of the membrane as an apoenzyme. The Cys59Ser variant cannot overcome the dual insults of amino acid substitution plus lack of Mo-bisPGD, leading to degradation of the DmsABC subunits. This indicates that the cofactor can serve as a chemical chaperone to mitigate the destabilizing effects of alteration of the FS0 cluster. These results provide insights into the role of the Mo-bisPGD-protein interaction in stabilizing the tertiary structure of DmsA during enzyme maturation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app