Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of sustained exposure to β-amyloid on calcium homeostasis and neuronal integrity in model nerve cell system expressing α4β2 nicotinic acetylcholine receptors.

Although the interaction between β-amyloid (Aβ) and nicotinic acetylcholine receptors has been widely studied, the impact of prolonged exposure to Aβ on nAChR expression and signaling is not known. In this study, we employed a neuronal culture model to better understand the impact of sustained exposure of Aβ on the regulation of cellular and synaptic function. The differentiated rodent neuroblastoma cell line NG108-15 expressing exogenous high-affinity α4β2 nAChRs was exposed to soluble oligomeric Aβ for several days. Ca(2+) responses, expression levels of α4β2 nAChRs, rate of mitochondrial movement, mitochondrial fission, levels of reactive oxygen species, and nuclear integrity were compared between Aβ-treated and untreated cells, transfected or not (mock-transfected) with α4β2 nAChRs. Sustained exposure of Aβ(1-42) to α4β2 nAChR-transfected cells for several days led to increased Ca(2+) responses on subsequent acute stimulation with Aβ(1-42) or nicotine, paralleled by increased expression levels of α4β2 nAChRs, likely the result of enhanced receptor recycling. The rate of mitochondrial movement was sharply reduced, whereas the mitochondrial fission protein pDrp-1 was increased in α4β2 nAChR-transfected cells treated with Aβ(1-42). In addition, the presence of α4β2 nAChRs dramatically enhanced Aβ(1-42)-mediated increases in reactive oxygen species and nuclear fragmentation, eventually leading to apoptosis. Our data thus show disturbed calcium homeostasis coupled with mitochondrial dysfunction and loss of neuronal integrity on prolonged exposure of Aβ in cells transfected with α4β2 nAChRs. Together, the results suggest that the presence of nAChRs sensitizes neurons to the toxic actions of soluble oligomeric Aβ, perhaps contributing to the cholinergic deficit in Alzheimer disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app