Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Biocompatibility of pristine graphene for neuronal interface.

OBJECT: Graphene possesses unique electrical, physical, and chemical properties that may offer significant potential as a bioscaffold for neuronal regeneration after spinal cord injury. The purpose of this investigation was to establish the in vitro biocompatibility of pristine graphene for interface with primary rat cortical neurons.

METHODS: Graphene films were prepared by chemical vapor deposition on a copper foil catalytic substrate and subsequent apposition on bare Permanox plastic polymer dishes. Rat neuronal cell culture was grown on graphene-coated surfaces, and cell growth and attachment were compared with those on uncoated and poly-d-lysine (PDL)-coated controls; the latter surface is highly favorable for neuronal attachment and growth. Live/dead cell analysis was conducted with flow cytometry using ethidium homodimer-1 and calcein AM dyes. Lactate dehydrogenase (LDH) levels-indicative of cytotoxicity-were measured as markers of cell death. Phase contrast microscopy of active cell culture was conducted to assess neuronal attachment and morphology.

RESULTS: Statistically significant differences in the percentage of live or dead neurons were noted between graphene and PDL surfaces, as well as between the PDL-coated and bare surfaces, but there was little difference in cell viability between graphene-coated and bare surfaces. There were significantly lower LDH levels in the graphene-coated samples compared with the uncoated ones, indicating that graphene was not more cytotoxic than the bare control surface. According to phase contrast microscopy, neurons attached to the graphene-coated surface and were able to elaborate long, neuritic processes suggestive of normal neuronal metabolism and morphology.

CONCLUSIONS: Further use of graphene as a bioscaffold will require surface modification that enhances hydrophilicity to increase cellular attachment and growth. Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app