JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Proteomic analysis and molecular modelling characterize the iron-regulatory protein haemojuvelin/repulsive guidance molecule c.

HJV (haemojuvelin) plays a key role in iron metabolism in mammals by regulating expression of the liver-derived hormone hepcidin, which controls systemic iron uptake and release. Mutations in HJV cause juvenile haemochromatosis, a rapidly progressing iron overload disorder in humans. HJV, also known as RGMc (repulsive guidance molecule c), is a member of the three-protein RGM family. RGMs are GPI (glycosylphosphatidylinositol)-linked glycoproteins that share ~50% amino acid identity and several structural motifs, including the presence of 14 cysteine residues in analogous locations. Unlike RGMa and RGMb, HJV/RGMc is composed of both single-chain and two-chain isoforms. To date there is no structural information for any member of the RGM family. In the present study we have mapped the disulfide bonds in mouse HJV/RGMc using a proteomics strategy combining sequential MS steps composed of ETD (electron transfer dissociation) and CID (collision-induced dissociation), in which ETD induces cleavage of disulfide linkages, and CID establishes disulfide bond assignments between liberated peptides. The results of the present study identified an HJV/RGMc molecular species containing four disulfide linkages. We predict using ab initio modelling that this molecule is a single-chain HJV/RGMc isoform. Our observations outline a general approach using tandem MS and ab initio molecular modelling to define unknown structural features in proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app