Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Krüppel-like factor 12 negatively regulates human endometrial stromal cell decidualization.

Members of the KLFs family of transcription factors play roles in maternal endometrium development during embryo implantation. However, the specific role of KLF12 in endometrium development has not yet been described. In this study, we showed that KLF12 expression in human endometrial stromal cells (HESCs) was significantly decreased after decidualization stimulated by 8-Br-cAMP and medroxyprogesterone acetate (MPA). The adenovirus-mediated overexpression of KLF12 in HESCs significantly repressed the expression and secretion of decidualization biomarker genes and their products decidual prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1) induced by 8-Br-cAMP and MPA. Moreover, CHIP and luciferase reporter assays demonstrated that KLF12 bound to a CAGTGGG element within the decidual prolactin promoter and decreased decidual PRL promoter (dPRL/-2000Luc) activation in a sequence-specific manner. Taken together, these findings suggest KLF12 is a negative regulator of human endometrial stromal cell decidualization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app