In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Magnesium orotate elicits acute cardioprotection at reperfusion in isolated and in vivo rat hearts.

Orotic acid and its salts chronically administered have been shown to significantly improve cardiac function in pathological settings associated with ischemia-reperfusion (I/R) injury. The aim of our study was to investigate the effect of magnesium orotate (Mg-Or) administration at the onset of post-ischemic reperfusion on myocardial function and infarct size (IS). Ex-vivo experiments performed on isolated perfused rat hearts were used to compare Mg-Or administration with a control group (buffer treated), ischemic post-conditioning, orotic acid treatment, and MgCl2 treatment. Mg-Or administration was also investigated in an in-vivo model of regional I/R performed in rats undergoing reversible coronary ligation. The effect of Mg-Or on mitochondrial permeability transition pore (mPTP) opening after I/R was investigated in vitro to gain mechanistic insights. Both ex-vivo and in-vivo experiments showed a beneficial effect from Mg-Or administration at the onset of reperfusion on myocardial function and IS. In-vitro assays showed that Mg-Or significantly delayed mPTP opening after I/R. Our data suggest that Mg-Or administered at the very onset of reperfusion may preserve myocardial function and reduce IS. This beneficial effect may be related to a significant reduction of mPTP opening, a usual trigger of cardiac cell death following I/R.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app