Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

DNA-damaging agents induce the RecA-independent homologous recombination functions of integrating conjugative elements of the SXT/R391 family.

Integrating conjugative elements (ICEs) of the SXT/R391 family are major contributors to the spread of antibiotic resistance genes. These elements also catalyze their own diversity by promoting inter-ICE recombination through the action of the RecA-independent homologous recombination system that they encode. Here, we report that expression of this recombination system, which consists of the single-stranded DNA annealing protein Bet and the exonuclease Exo, is induced by DNA-damaging agents via ICE-encoded transcriptional regulators. We show that the bet and exo genes are part of a large polycistronic transcript that contains many conserved ICE genes that are not involved in the main integration/excision and conjugative transfer processes. We show that although the recombination genes are highly transcribed, their translation is subject to additional strong regulatory mechanisms. We also show that an ICE-encoded putative single-stranded DNA binding protein (Ssb) limits hybrid ICE formation. Finally, a thorough in silico analysis reveals that orthologues of Bet and Exo are widely distributed in bacterial strains belonging to very distantly related bacterial species and are carried by various mobile genetic elements. Phylogenetic analyses suggest that the annealing proteins and exonucleases that compose these systems sometimes have different evolutionary origins, underscoring the strong selective pressure to maintain the functionality of these unrelated cooperating proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app