Add like
Add dislike
Add to saved papers

Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson's disease patients.

Eye 2013 April
PURPOSE: To demonstrate axonal loss in the retinal nerve fiber layer (RNFL) of patients with Parkinson's disease (PD) and to evaluate the ability of Fourier-domain optical coherence tomography (OCT) to detect RNFL degeneration and retinal thinning in these patients.

METHODS: PD patients (n=100) and healthy subjects (n=100) were included in the study and underwent visual acuity, color vision, and OCT examinations using two next-generation Fourier-domain devices (Spectralis and Cirrus). Differences in the RNFL thicknesses were compared between patients and controls.

RESULTS: RNFL thicknesses were significantly reduced in PD patients compared with healthy subjects, especially those obtained using the Spectralis OCT, in the inferotemporal quadrant (155.6±16.5 μm in healthy eyes vs 142.1±24.9 μm in patients, P=0.040) and in the superotemporal quadrant (142.6±20.9 μm in healthy eyes vs 132.77±18.6 μm in PD patients, P=0.046). Significant differences were observed between controls and patients in relation to mean macular thickness (P=0.031), foveal thickness (P=0.030), and inferior outer thickness (P=0.019).

CONCLUSION: PD is associated with RNFL loss and retinal thinning, which is detectable by Fourier-domain OCT measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app