JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking.

Glutamate is a major excitatory neurotransmitter in the vertebrate brain. Among the ionotropic glutamate receptors, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors are the major receptors mediating excitatory fast synaptic transmission. AMPA receptors are also responsible for modifying synaptic strength through the regulation of their numbers at synapses. Their high regulatability, therefore, could contribute to the mechanisms of synaptic plasticity. The mechanisms regulating AMPA receptor trafficking have evoked great interest through the decades. Recent studies show that in the brain, AMPA receptors make complexes with transmembrane AMPA regulatory proteins (TARPs), which serve as auxiliary subunits. TARPs are required for AMPA receptor function and trafficking. After the initial discovery of TARPs, several other AMPA receptor auxiliary subunits were identified: CNIH-2, CNIH-3, CKAMP44, SynDIG1, SOL-1, SOL-2 and GSG-1L. This review discusses progress in identifying the role of auxiliary subunits in AMPA receptor trafficking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app