Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Proteomic and metabolomic approaches to the study of polycystic ovary syndrome.

Polycystic ovary syndrome (PCOS) is considered a complex multifactorial disorder resulting from the interaction of genetic, environmental, and lifestyle influences. Nontargeted proteomics and metabolomics have been used in the past years with the aim of identifying molecules potentially involved in the pathophysiology of this frequent disorder. The biomolecules identified so far participate in many metabolic pathways, including energy metabolism (glucose and lipid metabolism), protein metabolic processes and protein folding, cytoskeleton structure, immune response, inflammation and iron metabolism, fibrinolysis and thrombosis, oxidative stress and intracellular calcium metabolism. These molecules provide key information about molecular functions altered in PCOS and raise questions concerning their precise role in the pathogenesis of this syndrome. The biomolecules identified by nontargeted proteomic and metabolomic approaches should be considered as candidates in future studies aiming to define specific molecular phenotypes of PCOS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app