Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

H₂S is an endothelium-derived hyperpolarizing factor.

AIMS: Endothelium-dependent vasorelaxation is mediated by endothelium-derived relaxing factor and endothelium-derived hyperpolarizing factor (EDHF). However, the molecular entity of EDHF remains unclear. The present study examined whether hydrogen sulfide (H₂S) acts as EDHF and how H₂S mediates EDHF pathways from endothelial origination to downstream target of smooth muscle cells (SMCs).

RESULTS: We found that knocking-out the expression of cystathionine γ-lyase (CSE) in mice (CSE-knockout [KO]) elevated resting-membrane-potential of SMCs and eliminated methacholine-induced endothelium-dependent relaxation of mesenteric arteries, but not that of aorta. Methacholine, a cholinergic-muscarinic agonist, hyperpolarized SMC in endothelium-intact mesenteric arteries from wide-type mice. This effect was inhibited by muscarinic antagonist (atropine) or the co-application of charybdotoxin and apamin, which blocked intermediate- and small-conductance KCa (IKCa and SKCa) channels, or abolished in CSE-KO mice. Supplementation of exogenous H₂S hyperpolarized vascular SMCs and endothelial cells from wide-type and CSE-KO mice. Both methacholine and H₂S induced greater SMC hyperpolarization of female wide-type mesenteric arteries than that of male ones. H2S-induced hyperpolarization is blocked by -SH oxidants and -SSH inhibitor. The expression of SK2.3 but not IK3.1 channel in vascular tissues was increased by H₂S and decreased by CSE inhibitor or CSE gene KO.

INNOVATION AND CONCLUSIONS: Taken together, H₂S is an EDHF. The identification of H2S as an EDHF will not only solve one of the long-lasting perplexing puzzles for the mechanisms underlying endothelium-dependent vasorelaxation, but also shed light on potential therapeutic effects of H₂S on pathological abnormalities in peripheral resistance arteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app