Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of pH on anti-rotavirus activity by comestible juices and proanthocyanidins in a cell-free assay system.

Cranberry (Vaccinium macrocarpon) and grape (Vitis labrusca) juices, and these species' secondary plant metabolites [i.e., proanthocyanidins (PACs)] possess antiviral activity. An understanding of the mechanism(s) responsible for these juices and their polyphenolic constituents' direct effect on enteric virus integrity, however, remains poorly defined. Using the rotavirus (RTV) as a model enteric virus system, the direct effect of manufacturer-supplied and commercially purchased juices [Ocean Spray Pure Cranberry 100 % Unsweetened Juice (CJ), Welch's 100 % Grape Juice (GJ), 100 % Concord (PG) and 100 % Niagara juices (NG)] and these species' cranberry (C-PACs) and grape PACs (G-PACs) was investigated. Loss of viral capsid integrity in cell-free suspension by juices and their PACs, and as a factor of pH, was identified by an antigen (RTV) capture enzyme-linked immunosorbent assay. At native and an artificially increased suspension at or near pH 7, loss of viral infectivity occurred after 5 min, in the order CJ > NG = GJ > PG, and PG > GJ = NG = CJ, respectively. Antiviral activity of CJ was inversely related to pH. Grape, but not cranberry PACs, displayed a comparatively greater anti-RTV activity at a suspension pH of 6.7. Anti-RTV activity of C-PACs was regained upon reduction of RTV-cranberry PAC suspensions to pH 4. An alteration or modification of Type A PAC (of V. macrocarpon) structural integrity at or near physiologic pH is suggested to have impacted on this molecule's antivirus activity. Type B PACs (of V. labrusca) were refractive to alternations of pH. Significantly, findings from pure system RTV-PAC testing paralleled and in turn, supported those RTV-juice antiviral studies. Electron microscopy showed an enshroudment by PACs of RTV particles, suggesting a blockage of viral antigenic binding determinants. The implications of our work are significant, especially in the interpretation of PAC (and PAC-containing food)-RTV interactions in the differing [pH] conditions of the gastrointestinal tract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app