JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exercise attenuates renal dysfunction with preservation of myocardial function in chronic kidney disease.

Previous studies have suggested that exercise improves renal and cardiac functions in patients with chronic kidney disease. The aim of this study was to evaluate the effects of long-term aerobic swimming exercise with overload on renal and cardiac function in rats with 5/6 nefrectomy (5/6Nx). Eight Wistar rats were placed into 4 groups: Control (C), Control+Exercise (E), Sedentary 5/6Nx (NxS) and 5/6Nx+Exercise (NxE). The rats were subjected to swimming exercise sessions with overload for 30 min five days per week for five weeks. Exercise reduced the effect of 5/6Nx on creatinine clearance compared to the NxS group. In addition, exercise minimized the increase in mean proteinuria compared to the NxS group (96.9±10.0 vs. 51.4±9.9 mg/24 h; p<0.05). Blood pressure was higher in the NxS and NxE groups compared to the C and E groups (216±4 and 178±3 vs. 123±2 and 124±2 mm Hg, p<0.05). In the 200 glomeruli that were evaluated, the NxS group had a higher sclerosis index than did the NxE group (16% vs. 2%, p<0.05). Echocardiography demonstrated a higher anterior wall of the left ventricle (LV) in diastole in the NxS group compared with the C, E and NxE groups. The NxS group also had a higher LV posterior wall in diastole and systole compared with the E group. The developed isometric tension in Lmax of the heart papillary muscle was lower in the NxS group compared with the C, E and NxE groups. These results suggested that exercise in 5/6Nx animals might reduce the progression of renal disease and lessen the cardiovascular impact of a reduction in renal mass.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app