JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Rapid, reversible impairment of synaptic signaling in cultured cortical neurons by exogenously-applied amyloid-β.

Alzheimer's disease is accompanied by the accumulation of amyloid-β (Aβ) and the microtubule-associated protein tau. Aβ toxicity is dependent upon its form as well as concentration. Soluble Aβ oligomers, rather than the fibrillar forms that comprise senile plaques, represent the toxic form and are correlated with the extent of dementia. Since soluble Aβ perturbs synaptic function, we examined the impact of exogenously applied Aβ on signaling in neurons cultured on multi-electrode arrays. We observed that subcytotoxic levels (10 nm-5 μM) of human Aβ1-42 perturbed synaptic transmission within hours. This perturbation suggests that mild cognitive problems, perhaps undetected by traditional clinical approaches, can accompany critical accumulation of Aβ. This effect was prevented by the calcium chelator BAPTA, indicating a requirement for calcium for inhibition of signaling by Aβ. Aβ-induced inhibition of signaling was not prevented by application of MK-801 or nimodipine (antagonists of the NMDA receptor and L-type voltage-sensitive calcium channel, respectively) suggesting that Aβ may induce influx by either channel, or additional channels, or that neurons contained sufficient calcium to mediate the impact of Aβ. Signaling returned to original levels within 120 h after administration of a single dosage of Aβ, or within 24 h after replacement of medium with fresh medium lacking Aβ, suggesting that intervention to reduce Aβ levels at their first appearance may prevent permanent neurotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app