Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Myofascial force transmission between the latissimus dorsi and gluteus maximus muscles: an in vivo experiment.

There are extensive connections between the latissimus dorsi (LD) and gluteus maximus (GMax) muscles and the thoracolumbar fascia (TLF), which suggests a possible pathway for myofascial force transmission. The present study was designed to provide empirical evidence of myofascial force transmission from LD to contralateral GMax through TFL in vivo. To accomplish this goal, we evaluated whether active or passive tensioning of the LD results in increased passive tension of the contralateral GMax, indexed by changes in the hip resting position (RP) or passive stiffness. The hip RP was defined as the angular position in which the passive joint torque equals zero, and passive hip stiffness was calculated as the change in passive torque per change in joint angle. Thirty-seven subjects underwent an assessment of their passive hip torque against medial rotation by means of an isokinetic dynamometer. These measures were carried out under three test conditions: (1) control, (2) passive LD tensioning and (3) active LD tensioning. Electromyography was used to monitor the activity of the hip muscles and the LD under all conditions. Repeated measures analyses of variance demonstrated that passive LD tensioning shifted the hip RP towards lateral rotation (p=0.009) but did not change the passive hip stiffness (p>0.05). Active LD tensioning shifted the hip RP towards lateral rotation (p<0.001) and increased the passive hip stiffness (p≤0.004). The results demonstrated that manipulation of the LD tension modified the passive hip variables, providing evidence of myofascial force transmission in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app