JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Synaptic dynamics: Linear model and adaptation algorithm.

Linear model for synapse temporal dynamics and learning algorithm for synaptic adaptation in spiking neural networks are presented. The proposed linear model substantially simplifies analysis and training of spiking neural networks, meanwhile accurately models facilitation and depression dynamics in synapse. The learning rule is biologically plausible and is capable of simultaneously adjusting both of LTP and STP parameters of individual synapses in a network. To prove efficiency of the system, a small size spiking neural network is trained for generating different spike and bursting patterns of cortical neurons. The simulation results revealed that the linear model of synaptic dynamics along with the proposed STDP based learning algorithm can provide a practical tool for simulating and training very large scale spiking neural circuitry comprising of significant number of synapses and neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app