Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Imidazoline-1 receptor ligands as apoptotic agents: pharmacophore modeling and virtual docking study.

The group of imidazoline-1 receptors (I(1)-IR) agonists encompasses drugs are currently used in treatment of high blood pressure and hyperglycemia. The I(1)-IR protein structures have not been determined yet, but Nischarin protein that binds numerous imidazoline ligands inducing initiation of various cell-signaling cascades, including apoptosis, is identified as strong I(1)-IR candidate. In this study we examined apoptotic activity of rilmenidine (potent I(1)-IR agonist), moxonidine (moderate I(1)-IR agonist), and efaroxan (I(1)-IR partial agonist) on cancer cell line (K562) expressing Nischarin. The Nischarine domains mapping was performed by use of the Informational Spectrum Method (ISM). The 3D-Quantitative Structure-Activity Relationship (3D-QSAR) and virtual docking studies of 29 I(1)-IR ligands (agonists, partial agonists, and antagonists) were carried out on I(1)-IR receptors binding affinities. The 3D-QSAR study defined 3D-pharmacophore models for I(1)-IR agonistic and I(1)-IR antagonistic activity and created regression model for prediction of I(1)-IR activity of novel compounds. The 3D-QSAR models were applied for design and evaluation of novel I(1)-IR agonists and I(1)-IR antagonists. The most promising I(1)-IR ligands with enhanced activities than parent compounds were proposed for synthesis. The results of 3D-QSAR, ISM, and virtual docking studies were in perfect agreement and allowed precise definition of binding mode of I(1)-IR agonists (Arg 758, Arg 866, Val 981, and Glu 1057) and significantly different binding modes of I(1)-IR antagonists or partial I(1)-IR agonists. The performed theoretical study provides reliable system for evaluation of I(1)-IR agonistic and I(1)-IR antagonistic activity of novel I(1)-IR ligands, as drug candidates with anticancer activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app