Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

cis-9,trans-11 conjugated linoleic acid stimulates expression of angiopoietin like-4 in the placental extravillous trophoblast cells.

A number of studies have been carried out to examine the biological function of conjugated linoleic acid (CLA) and its potential health benefits. However, not much is known about how CLA isomers mediate their effect on angiogenesis and vascularization during early placentation. In this paper we demonstrate that cis-9,trans-11(c9,t11)-CLA stimulated the expression of angiopoietin like-4 (ANGPTL4) mRNA and protein accompanied by tube formation in first trimester placental trophoblast cells, HTR8/SVneo whereas the other CLA isomer, trans-10,cis-12 (t10,c12)-CLA had no such effects. c9,t11-CLA however did not stimulate expression of the most potent angiogenic factor, vascular endothelial growth factor (VEGF) in these cells. Silencing ANGPTL4 in these cells significantly reduced the stimulatory effect of c9,t11-CLA on tube formation, indicating the involvement of ANGPTL4. In addition, c9,t11-CLA increased the mRNA expression of several pro-angiogenic factors such as fatty acid binding protein-4 (FABP4), cyclooxygenase-2 (COX-2) and adipose differentiation-related protein (ADRP) in HTR8/SVneo cells. c9,t11-CLA also induced the uptake of docosahexaenoic acid, 22:6n-3 (DHA), a stimulator of tube formation in these cells. Triacsin C, an acylCoA synthetase inhibitor, attenuated c9,t11-CLA induced DHA uptake, tube formation and cellular proliferation in HTR8/SVneo cells. Our data suggest that the c9,t11-CLA isomer may regulate angiogenic processes during early placentation via increased expression of ANGPTL4 and other pro-angiogenic factors such as FABP4, COX-2 and ADRP with concomitant increase in the uptake of DHA in these cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app