JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Feature-based image patch approximation for lung tissue classification.

In this paper, we propose a new classification method for five categories of lung tissues in high-resolution computed tomography (HRCT) images, with feature-based image patch approximation. We design two new feature descriptors for higher feature descriptiveness, namely the rotation-invariant Gabor-local binary patterns (RGLBP) texture descriptor and multi-coordinate histogram of oriented gradients (MCHOG) gradient descriptor. Together with intensity features, each image patch is then labeled based on its feature approximation from reference image patches. And a new patch-adaptive sparse approximation (PASA) method is designed with the following main components: minimum discrepancy criteria for sparse-based classification, patch-specific adaptation for discriminative approximation, and feature-space weighting for distance computation. The patch-wise labelings are then accumulated as probabilistic estimations for region-level classification. The proposed method is evaluated on a publicly available ILD database, showing encouraging performance improvements over the state-of-the-arts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app