JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Thioredoxin-like protein 2 is overexpressed in colon cancer and promotes cancer cell metastasis by interaction with ran.

AIMS: Our previous work identified thioredoxin-like protein 2 (Txl-2) as the target of the monoclonal antibody MC3 associated with colon cancer, but its underlying mechanisms remain poorly understood. Txl-2, a novel thioredoxin (Trx) and nucleoside diphosphate kinase family member, is alternatively spliced and gives rise to three different Txl-2 isoforms. In this study, Txl-2 expression in colon cancer, differential functions for Txl-2 isoforms in cell invasion and metastasis, and the downstream signaling were investigated.

RESULTS: Txl-2 expression was elevated in colon cancer tissues compared to normal colonic tissues, with a high correlation between the histological grade and prognosis. Knockdown of Txl-2 expression significantly inhibited cancer cell motility, and the invasive and metastatic abilities of colon cancer cells. Interestingly, Txl-2 isoforms showed differential effects on cancer cell invasion and metastasis. Cell invasion and metastasis were significantly promoted by Txl-2b but inhibited by Txl-2c, while no obvious effect was observed for Txl-2a. Furthermore, a direct interaction was identified between Txl-2b and Ran, a Ras-related protein, by yeast two-hybrid assay and coimmunoprecipitation. PI3K pathway was found to be a major pathway mediating Txl-2b induced tumor invasion and metastasis.

INNOVATION: The current study provides a novel biomarker and target molecule for the diagnosis and treatment of colon cancer and provides a novel paradigm to understand how alternative splicing functions in human cancer.

CONCLUSION: Our findings demonstrate an elevated Txl-2 expression in colon cancer and that Txl-2b promotes cell invasion and metastasis through interaction with Ran and PI3K signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app