Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Lipotoxicity contributes to endothelial dysfunction: a focus on the contribution from ceramide.

Cardiovascular complications are the leading causes of morbidity and mortality in individuals with obesity, type 2 diabetes mellitus (T2DM), and insulin resistance. Complications include pathologies specific to large (atherosclerosis, cardiomyopathy) and small (retinopathy, nephropathy, neuropathy) vessels. Common among all of these pathologies is an altered endothelial cell phenotype i.e., endothelial dysfunction. A crucial aspect of endothelial dysfunction is reduced nitric oxide (NO) bioavailability. Hyperglycemia, oxidative stress, activation of the renin-angiotensin system, and increased pro-inflammatory cytokines are systemic disturbances in individuals with obesity, T2DM, and insulin resistance and each of these contribute independently and synergistically to decreasing NO bioavailability. This review will examine the contribution from elevated circulating fatty acids in these subjects that lead to lipotoxicity. Particular focus will be placed on the fatty acid metabolite ceramide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app