Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Tumor growth modeling from the perspective of multiphase porous media mechanics.

Multiphase porous media mechanics is used for modeling tumor growth, using governing equations obtained via the thermodynamically constrained averaging theory (TCAT). This approach incorporates the interaction of more phases than legacy tumor growth models. The tumor is treated as a multiphase system composed of an extracellular matrix, tumor cells which may become necrotic depending on nutrient level and pressure, healthy cells and an interstitial fluid which transports nutrients. The governing equations are numerically solved within a Finite Element framework for predicting the growth rate of the tumor mass, and of its individual components, as a function of the initial tumor-to-healthy cell ratio, nutrient concentration, and mechanical strain. Preliminary results are shown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app