Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion.

Nature Genetics 2013 Februrary
Insulin secretion has a crucial role in glucose homeostasis, and failure to secrete sufficient insulin is a hallmark of type 2 diabetes. Genome-wide association studies (GWAS) have identified loci contributing to insulin processing and secretion; however, a substantial fraction of the genetic contribution remains undefined. To examine low-frequency (minor allele frequency (MAF) 0.5-5%) and rare (MAF < 0.5%) nonsynonymous variants, we analyzed exome array data in 8,229 nondiabetic Finnish males using the Illumina HumanExome Beadchip. We identified low-frequency coding variants associated with fasting proinsulin concentrations at the SGSM2 and MADD GWAS loci and three new genes with low-frequency variants associated with fasting proinsulin or insulinogenic index: TBC1D30, KANK1 and PAM. We also show that the interpretation of single-variant and gene-based tests needs to consider the effects of noncoding SNPs both nearby and megabases away. This study demonstrates that exome array genotyping is a valuable approach to identify low-frequency variants that contribute to complex traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app