JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Correcting deregulated Fxyd1 expression ameliorates a behavioral impairment in a mouse model of Rett syndrome.

Brain Research 2013 Februrary 17
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the MECP2. Several genes have been shown to be MECP2 targets. We previously identified FXYD1 (encoding phospholemman; a protein containing the motif phenylalanine-X-tyrosine-aspartate), a gene encoding a transmembrane modulator of the Na, K-ATPase (NKA) enzyme, as one of them. In the absence of MECP2, FXYD1 expression is increased in the frontal cortex (FC) of both RTT patients and Mecp2(Bird) null mice. Here, we show that Fxyd1 mRNA levels are also increased in the FC and hippocampus (HC) of male mice carrying a truncating mutation of the Mecp2 gene (Mecp2(308)). To test the hypothesis that some of the behavioral phenotypes seen in these Mecp2 mutants could be ameliorated by genetically preventing the Fxyd1 response to MECP2 deficiency, we crossed Fxyd1 null male mice with Mecp2(308) heterozygous females and behaviorally tested the adult male offspring. Mecp2(308) mice had impaired HC-dependent novel location recognition, and this impairment was rescued by deletion of both Fxyd1 alleles. No other behavioral or sensorimotor impairments were rescued. These results indicate that reducing FXYD1 levels improves a specific cognitive impairment in MECP2-deficient mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app