Add like
Add dislike
Add to saved papers

Synthesis and crystal structure of cubic Ca16Si17N34.

Inorganic Chemistry 2012 December 4
Since the late 1960s, the exact structure of cubic calcium silicon nitride has been a source of debate. This paper offers evidence that the cubic phase CaSiN(2) described in the literature is actually Ca(16)Si(17)N(34). Presented here is a method for synthesizing single crystals of cubic-calcium silicon nitride from calcium nitride and elemental silicon under flowing nitrogen at 1500 °C. The colorless millimeter-sized crystals of Ca(16)Si(17)N(34) with a refractive index (n(25)) = 1.590 were found to be cubic (a = 14.8882 Å) and belong to the space group F43m (216). The synthesis of bulk, powdered cubic-Ca(16)Si(17)N(34) from calcium cyanamide and silicon is also discussed. Ca(16)Si(17)N(34) is a relatively air-stable refractory ceramic. In contrast to the orthorhombic phase of CaSiN(2), in which Ca(2+) sits in octahedral sites, this cubic phase has Ca(2+) in cubic sites that makes it an interesting host for new phosphors and gives rise to unique crystal field splitting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app