Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhalation of chlorine causes long-standing lung inflammation and airway hyperresponsiveness in a murine model of chemical-induced lung injury.

Toxicology 2013 January 8
Chlorine is highly irritating when inhaled, and is a common toxic industrial gas causing tissue damage in the airways followed by an acute inflammatory response. In this study, we investigated mechanisms by which chlorine exposure may cause reactive airways dysfunction syndrome (RADS) and we examined the dose-dependency of the development of symptoms. Mice were exposed to 50 or 200 ppm Cl(2) during a single 15 min exposure in a nose-only container. The experiment terminated 2, 6, 12, 24, 48, 72 h and 7, 14, 28 and 90 days post exposure. Inflammatory cell counts in bronchoalveolar lavage (BAL), secretion of inflammatory mediators in BAL, occurrence of lung edema and histopathological changes in lung tissue was analyzed at each time-point. Airway hyperresponsiveness (AHR) was studied after 24 and 48 h and 7, 14, 28 and 90 days. The results showed a marked acute response at 6h (50 ppm) and 12h (200 ppm) post exposure as indicated by induced lung edema, increased airway reactivity in both central and peripheral airways, and an airway inflammation dominated by macrophages and neutrophils. The inflammatory response declined rapidly in airways, being normalized after 48 h, but inflammatory cells were sustained in lung tissue for at least seven days. In addition, a sustained AHR was observed for at least 28 days. In summary, this mouse model of chlorine exposure shows delayed symptoms of hyperreactive airways similar to human RADS. We conclude that the model can be used for studies aimed at improved understanding of adverse long-term responses following inhalation of chlorine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app