Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Variation patterns in individual fish responses to chemical stress among estuaries, seasons and genders: the case of the European flounder (Platichthys flesus) in the Bay of Biscay.

The objective was to describe and model variation patterns in individual fish responses to contaminants among estuaries, season and gender. Two hundred twenty-seven adult European flounders were collected in two seasons (winter and summer) in four estuaries along the Bay of Biscay (South West France), focusing on a pristine system (the Ster), vs. three estuaries displaying contrasted levels of contaminants (the Vilaine, Loire and Gironde). Twenty-three variables were measured by fish, considering the load of contaminants (liver metals, liver and muscle persistent organic pollutants, muscle polycyclic aromatic hydrocarbons); the gene expression (Cyt C oxydase, ATPase, BHMT, Cyt P450 1A1, ferritin); the blood genotoxicity (Comet test); and liver histology (foci of cellular alteration-tumour, steatosis, inflammation, abnormal glycogen storage). Canonical redundancy analysis (RDA) was used to model these variables using gender, season and estuary of origin as explanatory variables. The results underlined the homogeneity of fish responses within the pristine site (Ster) and more important seasonal variability within the three contaminated systems. The complete model RDA was significant and explained 35 % of total variance. Estuary and season respectively explained 30 and 5 % of the total independent variation components, whilst gender was not a significant factor. The first axis of the RDA explains nearly 27 % of the total variance and mostly represents a gradient of contamination. The links between the load of contaminants, the expression of several genes and the biomarkers were analysed considering different levels of chemical stress and a possible multi-stress, particularly in the Vilaine estuary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app