Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of the adaptor protein GIPC1/Synectin on radioresistance and survival after irradiation of prostate cancer.

PURPOSE: Studies have shown that GIPC1/Synectin is an essential adaptor protein of receptors that play an important role in cancer progression and therapy resistance. This is the first study to explore the role of GIPC1/Synectin in radioresistance of prostate cancer and as a possible predictive marker for outcome of primary radiation therapy.

MATERIALS AND METHODS: The effect of RNA interference-mediated GIPC1/Synectin depletion on clonogenic cell survival after irradiation with 0, 2, 4, or 6 Gy was assayed in two different GIPC1/Synectin-expressing human prostate cancer cell lines. The clinical outcome data of 358 men who underwent radiotherapy of prostate cancer with a curative intention were analyzed retrospectively. Uni- and multivariate analysis was performed of prostate-specific antigen recurrence-free survival and overall survival in correlation with protein expression in pretreatment biopsy specimens. Protein expression was evaluated by standard immunohistochemistry methods.

RESULTS: In cell culture experiments, no change was detected in radiosensitivity after depletion of GIPC1/Synectin in GIPC1/Synectin-expressing prostate cancer cell lines. Furthermore, there was no correlation between GIPC1/Synectin expression in human pretreatment biopsy samples and overall or biochemical recurrence-free survival after radiotherapy in a retrospective analysis of the study cohort.

CONCLUSION: Our results do not show a predictive or prognostic function of GIPC1/Synectin expression for the outcome of radiotherapy in prostate cancer. Furthermore, our in vitro results do not support a role of GIPC1 in the cellular radiation response. However, the role of GIPC1 in the progression of prostate cancer and its precursors should be subject to further research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app