JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts.

Gene 2013 January 16
The myofibroblast is a mesenchymal cell characterized by synthesis of the extracellular matrix, plus contractile and secretory activities. Myofibroblasts participate in physiological tissue repair, but can also cause devastating fibrosis. They are present in the tumor stroma of carcinomas and contribute to tumor growth and spreading. As myofibroblasts derive from various cell types and appear in a variety of tissues, there is marked variability in their phenotype. As regulatory mechanisms of wound healing are likely conserved among vertebrates, detailed knowledge of these mechanisms in more distant species will help to distinguish general from specific phenomena. To provide this as yet missing comparison, we analyzed the impact of the chemical inhibition of TGF-beta signaling on gene expression in chicken embryo dermal myofibroblasts. We revealed genes previously reported in mammalian systems (e.g. SPON2, ASPN, COMP, LUM, HAS2, IL6, CXCL12, VEGFA) as well as novel TGF-beta dependent genes, among them PGF, VEGFC, PTN, FAM180A, FIBIN, ZIC1, ADCY2, RET, HHIP and DNER. Inhibition of TGF-beta signaling also induced multiple genes, including NPR3, AGTR2, MTUS1, SOD3 and NOV. We also analyzed the effects of long term inhibition, and found that it is not able to induce myofibroblast dedifferentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app