Add like
Add dislike
Add to saved papers

Joint effect of insulin signaling genes on cardiovascular events and on whole body and endothelial insulin resistance.

Atherosclerosis 2013 January
OBJECTIVE: Insulin resistance (IR) and cardiovascular disease (CVD) share a common soil. We investigated the combined role of single nucleotide polymorphisms (SNPs) affecting insulin signaling (ENPP1 K121Q, rs1044498; IRS1 G972R, rs1801278; TRIB3 Q84R, rs2295490) on CVD, age at myocardial infarction (MI), in vivo insulin sensitivity and in vitro insulin-stimulated nitric oxide synthase (NOS) activity.

DESIGN AND SETTING: 1. We first studied, incident cardiovascular events (a composite endpoint comprising myocardial infarction-MI, stroke and cardiovascular death) in 733 patients (2186 person-years, 175 events). 2. In a replication attempt, age at MI was tested in 331 individuals. 3. OGTT-derived insulin sensitivity index (ISI) was assessed in 829 individuals with fasting glucose <126 mg/dl. 4. NOS activity was measured in 40 strains of human vein endothelial cells (HUVECs).

RESULTS: 1. Risk variants jointly predicted cardiovascular events (HR = 1.181; p = 0.0009) and, when added to clinical risk factors, significantly improved survival C-statistics; they also allowed a significantly correct reclassification (by net reclassification index) in the whole sample (135/733 individuals) and, even more, in obese patients (116/204 individuals). 2. Risk variants were jointly associated with age at MI (p = 0.006). 3. A significant association was also observed with ISI (p = 0.02). 4. Finally, risk variants were jointly associated with insulin-stimulated NOS activity in HUVECs (p = 0.009).

CONCLUSIONS: Insulin signaling genes variants jointly affect cardiovascular disease, very likely by promoting whole body and endothelium-specific insulin resistance. Further studies are needed to address whether their genotyping help identify very high-risk patients who need specific and/or more aggressive preventive strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app