Add like
Add dislike
Add to saved papers

Ameliorated stress related proteins are associated with improved cardiac function by sarcoplasmic reticulum calcium ATPase gene transfer in heart failure.

BACKGROUND: Previous studies showed that overexpression of sarco-endoplasmic reticulum calcium ATPase (SERCA2a) in a variety of heart failure (HF) models was associated with greatly enhanced cardiac performance. However, it still undefined the effect of SERCA2a overexpression on the systemic inflammatory response and neuro-hormonal factors.

METHODS: A rapid right ventricular pacing model of experimental HF was used in beagles. Then the animals underwent recombinant adeno-associated virus 1 (rAAV1) mediated gene transfection by direct intra-myocardium injection. HF animals were randomized to receive the SERCA2a gene, enhanced green fluorescent protein (control) gene, or equivalent phosphate buffered saline. Thirty days after gene delivery, the cardiac function was evaluated by echocardiographic testing. The protein level of SERCA2a was measured by western blotting. The proteomic analysis of left ventricular (LV) sample was determined using two-dimensional (2-D) gel electrophoresis and MALDI-TOF-MS. The serum levels of the systemic inflammatory and neuro-hormonal factors were assayed using radioimmunoassay kits.

RESULTS: The cardiac function improved after SERCA- 2a gene transfer due to the significantly increased SERCA2a protein level. Beagles treated with SERCA2a had significantly decreased serum levels of the inflammatory markers (interleukin-6 and tumor necrosis factor-α) and neuro-hormonal factors (brain natriuretic peptide, endothelin-1 and angiotensin II) compared with HF animals. The myocardial proteomic analysis showed that haptoglobin heavy chain, heat shock protein (alpha-crystallin-related, B6) were down-regulated, and galectin-1 was up-regulated in SERCA2a group compared with HF group, companied by up-regulated contractile proteins and NADH dehydrogenase.

CONCLUSIONS: These findings demonstrate that regional intramyocardial injections of rAAV1-SERCA2a vectors may improve global LV function, correlating with reverse activation of the systemic inflammatory, excessive neuroendocrine factors and the stress-associated myocardial proteins, suggesting that the beneficial effects of SERCA2a gene transfer may involve the attenuation of stress-associated reaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app