Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Immunohistochemical evidence for the relationship between microglia and GnRH neurons in the preoptic area of ovariectomized rats with and without steroid replacement.

Prostaglandins (PGs), whose synthesis is catalyzed by the rate-limiting enzyme cyclooxygenase (COX) including COX-1 and COX-2, are among the important mediators involved in the regulation of gonadotropin-releasing hormone (GnRH) secretion. However, the cellular origin of PGs remains obscure in terms of its relationship to GnRH neurons. The present study was therefore aimed to clarify the anatomical relationship between COX-1-producing microglia and GnRH neurons in the preoptic area (POA), and to examine possible influence of ovarian steroids. We performed a triple labeled immunofluorescent histochemistry of COX-1, CD11b (a specific marker for microglia) and GnRH in the POA of ovarian steroid-primed and non-primed ovariectomized rats. The result confirmed our previous study suggesting COX-1 immunoreactivity in the vicinity of, but not within, GnRH neurons in the POA. COX-1 around GnRH cells was entirely (100%) localized in cells containing CD11b regardless of steroid replacement in ovariectomized rats. These CD11b-immunoreactive cells had small cell bodies and highly branched fibers characteristic of ramified microglia. Three-dimensional reconstruction of confocal images revealed close proximity of some COX-1-containing microglia and GnRH neurons. These results showed selective and constitutive expression of COX-1 in ramified microglia in the vicinity of GnRH neurons, providing evidence for intercellular communication, mediated by PGs, from microglia to GnRH cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app