JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protein disulfide isomerase modification and inhibition contribute to ER stress and apoptosis induced by oxidized low density lipoproteins.

AIMS: Protein disulfide isomerase (PDI) is an abundant endoplasmic reticulum (ER)-resident chaperone and oxidoreductase that catalyzes formation and rearrangement (isomerization) of disulfide bonds, thereby participating in protein folding. PDI modification by nitrosative stress is known to increase protein misfolding, ER stress, and neuronal apoptosis. As LDL oxidation and ER stress may play a role in atherogenesis, this work was designed to investigate whether PDI was inactivated by oxLDLs, thereby participating in oxLDL-induced ER stress and apoptosis.

RESULTS: Preincubation of human endothelial HMEC-1 and of macrophagic U937 cells with toxic concentration of oxLDLs induced PDI inhibition and modification, as assessed by 4-HNE-PDI adducts formation. PDI inhibition by bacitracin potentiated ER stress (increased mRNA expression of CHOP and sXBP1) and apoptosis induced by oxLDLs. In contrast, increased PDI activity by overexpression of an active wild-type PDI was associated with reduced oxLDL-induced ER stress and toxicity, whereas the overexpression of a mutant inactive form was not protective. These effects on PDI were mimicked by exogenous 4-HNE and prevented by the carbonyl-scavengers N-acetylcysteine and pyridoxamine, which reduced CHOP expression and toxicity by oxLDLs. Interestingly, 4-HNE-modified PDI was detected in the lipid-rich areas of human advanced atherosclerotic lesions. Innovation and

CONCLUSIONS: PDI modification by oxLDLs or by reactive carbonyls inhibits its enzymatic activity and potentiates both ER stress and apoptosis by oxLDLs. PDI modification by lipid peroxidation products in atherosclerotic lesions suggests that a loss of function of PDI may occur in vivo, and may contribute to local ER stress, apoptosis, and plaque progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app