Add like
Add dislike
Add to saved papers

Robotic-assisted gait training and restoration.

The past two decades have seen the introduction of and a strong growth in the availability of rehabilitation interventions that are based on the use of robotics. A major driving factor has been the advancement of technology, with faster, more powerful computers, new computational approaches, as well as increased sophistication of motors and other electro mechanical components. These advancements in technology have not been the only factor propelling these new rehabilitation interventions. During the same period, a strong growth in the understanding of neuroplasticity and motor learning has also been witnessed. Although there is still much to learn, comprehension of how new skills are acquired, or old ones are relearned, is evolving at a fast pace. Much of this improved understanding can be linked to the advancement of central nervous system imaging as well as techniques for studying changes at the cellular or molecular level. In this review, the authors present the notion that an ever-advancing understanding of neuroplasticity and motor learning can provide a theoretical basis for the clinical use of rehabilitation robotics as applied to enhancing mobility. Specifically focusing on locomotor training after injury to the central nervous system, these principles can provide guidance to clinicians on how to structure their interventions to potentially promote or accelerate functional recovery in their patients. Several types of existing robotic devices to assist walking that are currently available for use in the clinic, as well as their advantages and limitations, will be discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app